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ABSTRACT 
 Mesoscale models are used to study dynamic deformation and failure in silicon carbide (SiC) and 
aluminum oxynitride (AlON) polycrystals.  Elastic and anisotropic elastic-plastic crystal models 
represent mechanical behavior of SiC and AlON and grains, respectively.  Cohesive zone models 
represent intergranular fracture.  Failure data that can be used to inform macroscopic continuum 
models of ceramic behavior are collected and analyzed.  Studied are effects of grain morphology, 
specimen size, and applied stress state on behavior of polycrystalline aggregates loaded dynamically at 
applied strain rates on the order of 105/s.  Results for SiC demonstrate shear-induced dilatation, 
increasing shear strength with increasing confinement or pressure, increasing strength with decreasing 
specimen size (in terms of number of grains), and decreasing strength variability with decreasing size.  
Results for AlON demonstrate increased initiation of slip activity—particularly in the vicinity of 
constrained grain boundaries—with confinement. 
 
1. INTRODUCTION 
 Ballistic performance of a ceramic depends on a number of factors associated with the material 
response to high loading rates and high pressures that arise during impact 1-3.  The performance 
difference of two monolithic ceramic materials of comparable mass density necessarily originates from 
microstructure: crystal structure and composition, grain morphology, grain boundaries, and defects 
such as pores, inclusions, and secondary phases.  Crystal structure and composition affect bulk 
mechanical properties such as elastic stiffness, hardness, cleavage strength, dislocation slip resistance, 
twinning resistance, and possible phase transformations.  Grain boundaries and defects can affect 
failure properties such as fracture toughness and spall strength. 
 Mesoscale modeling, wherein geometries of individual grains are resolved explicitly, offers insight 
into effects of microstructure on dynamic performance of polycrystalline solids.  Previous modeling 
efforts on ceramics have often considered only two spatial dimensions 4-6.  The present representation 
is three-dimensional, extending work of Kraft et al. 7 and Gazonas et al. 8.  In addition to AlON 
addressed previously 7, 8, the present work considers SiC (specifically SiC-N, primarily consisting of 
the 6H polytype).  AlON and SiC exhibit some noteworthy physical differences.  SiC (-phase, 6H) 
belongs to a hexagonal crystal system, while AlON (-phase) is cubic.  Polycrystalline SiC is opaque, 
while polycrystalline AlON is transparent.  SiC has a lower mass density and higher fracture strength 
and toughness than AlON, with a typical grain size smaller than that of AlON by a factor of ~40.  
Upon optical examination, AlON 9 appears to have fewer processing defects (e.g., voids and 



inclusions) than SiC-N 10.  Both can exhibit limited plasticity under loading involving confining 
pressure: SiC by propagation of partial dislocations (and associated stacking faults) on {0001} basal 
planes 11, 12, and AlON by glide of partial dislocations on {111} octahedral planes 13, 14. 
 In addition to providing insight of effects of microstructure on performance, mesoscale modeling 
can yield information to motivate or parameterize macroscopic models that do not explicitly resolve 
features of the microstructure.  Brittle materials are known to exhibit a size effect, wherein smaller 
samples are often stronger, typically assumed a result of a lower probability of containment of a 
critical flaw.  Numerical failure modeling of brittle materials is also prone to mesh sensitivity.  One 
representative macroscopic model that addresses issues of failure statistics and size effects is Kayenta 
15, 16.  Statistics gathered from mesoscale computations can provide input to Kayenta failure surfaces.  
Mesoscale simulations can address small specimen sizes comparable to finite element sizes used in 
macroscopic representations, and can consider homogeneous boundary conditions not easily applied in 
standard characterization tests for failure of brittle materials.  Limitations of the present approach are 
that polycrystalline samples comparable in size to those tested experimentally cannot be simulated 
directly due to computing constraints (particularly for SiC with its small grain size) so that validation 
of mesoscopic computations becomes difficult. Furthermore, a number of microscopic properties are 
not known precisely (e.g., grain boundary fracture properties), and their effects on macroscopic 
response must be estimated through extensive parameter studies 4-6, 17. 
 This paper is organized as follows.  Section 2 summarizes constitutive models for bulk behavior of 
single crystals of SiC and AlON.  Section 3 summarizes fracture models for interfaces.  Section 4 
discusses microstructures represented in mesoscale finite element simulations of ceramic polycrystals.  
Sections 5 and 6 report on results for SiC and AlON, respectively.  Section 7 concludes the paper. 
 
2. CERAMIC SINGLE CRYSTALS: CONSTITUTIVE MODELING 
 Principles of continuum mechanics are used to represent mechanical behavior of individual grains 
within a ceramic polycrystal.  Notational conventions of nonlinear continuum mechanics 18 are used, 
with all vectors and tensors referred to a single fixed Cartesian coordinate system.  Thermal effects are 
not considered.  Local balances of mass, linear momentum, angular momentum, and energy are 

 0 J  , 0 P x , T TPF FP , W  P F : , (1) 

where 0  is the reference mass density,    F x 1 u  is the deformation gradient,  is the 

referential gradient operator, 1 is the unit tensor, ( , )t  x X X u  are spatial coordinates with u the 
displacement, detJ  F , P is the first Piola-Kirchhoff stress, and W is the energy density.  The 
deformation gradient and plastic velocity gradient can be written, respectively, as 

  E PF F F , 1 i i i

i
  P PF F s m  ,  (2) 

where EF  accounts for elasticity and rigid rotation, PF  accounts for plastic slip, and i , is , and im  
are the slip rate, slip direction, and slip plane normal for slip system i.  Relations in (2) can be extended 
to account for deformation twins 14, 19, 20 that may be of importance in AlON 9; discussion of twinning 
models is omitted here for brevity.  Internal energy density is 

 ˆ ( ) ( )W W f  EE , (1/ 2)( )T E E EE F F 1 , (3) 

where Ŵ depends on elastic strain EE  via second-order elastic constants and possibly higher-order 
elastic coefficients or pressure-sensitive second-order coefficients.  Stress P and Cauchy pressure p are 

 ( / ) TW   E E PP F E F , [1/(3 )]tr( )Tp J  FP . (4) 

In (3), function f accounts for contributions from defects such as dislocations, vacancies, stacking 
faults, and twin boundaries, and  is a generic internal state variable representing such defects.  In the 



absence of slip or defects, and when pressure dependence of elastic coefficients is omitted, (3)-(4) 
become the usual relations of a Kirchhoff-St. Venant hyperelastic solid with second-order moduli C: 

 (1/ 2) : :W  E C E , (1/ 2)( )T E F F 1 , / ( / ) ( : )W W      P F F E F C E . (5) 

In the geometrically linear approximation, (5) is replaced with the familiar linear elasticity relations 

 (1/ 2) : :W  ε C ε , (1/ 2)[ ( ) ]T   ε u u , / : :T W      P P ε C ε C u . (6) 

Kinetic equations for slip and possible strain hardening are of the functional form 

 ( / )i i i
c     , / ( )c G g  , ( )i     , (7) 

with i  the resolved Kirchhoff stress on shear system i, c  the shear strength that is assumed equal for 

all slip systems, G the shear modulus that can depend on pressure, and g a scalar function of 
dislocation density.  More detailed forms of (7) are available elsewhere 14, 19, 20. 
 Mechanical properties are listed in Table 1 for the two ceramics studied in the present work.  
Supporting references with extensive lists of properties are available for SiC 12 and AlON 14.  Cubic 
elastic constants for AlON are available only from first-principles calculations 7, 8, 21 and are subject to 
uncertainty, since values quoted have not been validated through experiments.  Properties of SiC are 
representative of SiC-N manufactured by BAE 3.  Properties of AlON are representative of a standard 
composition having 35.7 mol % AlN 22.  Single crystals are elastically anisotropic; listed bulk and 
shear moduli and their pressure derivatives at the reference state are representative values for fully 
dense polycrystals.  The initial dynamic slip resistance c, in each material approximately 2% of 
effective shear modulus G, reflects the experimentally measured polycrystalline shear strength under 
impact conditions at or above the HEL (strain rate ~105/s, pressure >10 GPa) 11, 14, 23. 
 

Table 1: Bulk mechanical properties of SiC and AlON 
Property SiC AlON 

Structure 6H spinel 
Phase  
Crystal system hexagonal cubic 
Mass density 0  3227 kg/m3 3714 kg/m3

Elastic constant C11  501 GPa 377 GPa 
Elastic constant C12  112 GPa 133 GPa 
Elastic constant C44 161 GPa 125 GPa 
Elastic constant C13 52 GPa ( = C12 ) 
Elastic constant C33 549 GPa ( = C11 ) 
Bulk modulus B 222 GPa 214 GPa 
Shear modulus G 194 GPa 124 GPa 
B = dB/dp 3.10 4.20 
G = dG/dp 0.90 0.95 
Primary slip plane {0001} {111} 
Strength c/G 0.022 0.019 
Typical grain size 5 m 200 m 

 
3. GRAIN BOUNDARY INTERFACES: FRACTURE MODELING 
 A cohesive zone model is used to represent intergranular (i.e. grain boundary) fracture.  First 
consider mode I fracture.  Crack opening initiates when resolved normal traction  on an interface 
exceeds fracture strength c. A simple cohesive law of the following form 7, 8 then relates crack 
opening displacement  and normal traction : 



  (1 / ) for 0 / 1c c c         ;  0 for / 1c    . (8) 

In the context of linear elastic fracture mechanics, fracture toughness Kc, surface energy c, strain 
energy release rate Gc, strength c, critical separation c, and cohesive zone length lc are related by 17, 24 

 2 2(1 ) / 2 (1/ 2)c c c c cK E G       , 2 2/ [ (1 )]c c cl E     ,  (9) 

where elastic modulus 9 /(3 )E BG B G   and Poisson’s ratio (3 2 ) /(6 2 )B G B G    .  Properties 
are listed in Table 2 for SiC 3, 16 and AlON 25, estimated from flexure strength and static fracture 
toughness measurements.  For comparison, spall strengths of SiC 26 and AlON 27 are also listed in 
Table 2; spall strength values are comparable to flexure strengths, though spall strengths are known 
vary considerably with impact pressure.  Relations analogous to (8) and (9) are used to describe the 
relationship between shear traction and tangential crack opening (i.e., mode II/III fracture), with 
equivalent properties.  In the finite element implementation of the fracture model, after complete 
interfacial separation (/c > 1) occurs, interactions between grains are addressed via a multi-body 
contact algorithm in the SIERRA software framework 28 that prohibits interpenetration of material.  
Post-fracture contact is assumed frictionless.  
 More sophisticated cohesive laws with strength or toughness depending on mode mixity, loading 
rate, and/or temperature are available, and have been examined in detail elsewhere 17, 24, 29.  
Transgranular (i.e., cleavage) fracture within individual grains is not modeled in the present work.  The 
assumption that dynamic fracture occurs predominantly at grain boundaries is appropriate for 
compositions of SiC (e.g., SiC-N) of present interest that fail statically and dynamically in an 
intergranular fashion 10, 30 and was followed in a previous mesoscale model of spall fracture in SiC 6.  
The assumption that dynamic fracture in AlON occurs predominantly at grain boundaries was used by 
Kraft et al. 7, 8, though recovered samples from dynamic compression experiments suggest cleavage 
occurs on {111} planes 9, 13.  A two-dimensional numerical model of transgranular fracture in alumina 
has been implemented elsewhere 4; a three-dimensional capability is unavailable in the finite element 
software 28 used in the present work for materials of current interest.  All grain boundaries within a 
sample of a given material are assumed to have the same properties 6-8.  Fracture strength and/or 
toughness distributions are expected to exist in real materials (resulting from lattice misorientation 
distributions and grain boundary defects) and can affect computed macroscopic mechanical properties 
and failure statistics 4, 5, 17.  As-processed polycrystalline SiC and AlON contain defects such as limited 
porosity, second-phase inclusions, and small micro-cracks 10, 22; explicit incorporation of such defects 
in mesoscale models will be investigated in future work.  The present study focuses on effects of grain 
morphology, bulk material behavior (e.g., crystal structure, elasticity, and plasticity), applied stress 
state, and specimen size (i.e., number of grains). 
 

Table 2: Fracture properties of SiC and AlON 
Property SiC AlON 

Fracture strength c 570 MPa 306 MPa 
Fracture toughness Kc 5.1 MPa m1/2 2.5 MPa m1/2 
Surface energy c 28.1 J/m2 9.4 J/m2 
Critical opening c 0.197 m 0.122 m  
Cohesive length lc 125.8 m 104.8 m 
Spall strength s 0.54 GPa -1.3 GPa 0.14 GPa -1.7 GPa 

 
4. MICROSTRUCTURAL REPRESENTATIONS 
 The procedure for generating grain geometries, employing methods and software developed by 
Rollett and colleagues 31 is discussed in detail elsewhere 7.  Two finite element meshes, each of a 



different microstructure, are considered here, as shown in Figure 1.  Pertinent properties of each 
microstructure are listed in Table 3.  Cumulative grain size distributions are shown in Figure 2; 
microstructure I displays a smaller variation in grain size than microstructure II, with more grains of 
size closer in size to the average grain size.  Microstructure I features larger, more equiaxed grains, of 
more uniform size.  Microstructure II features smaller grains, with more jagged grain boundaries.  
Microstructure I is deemed qualitatively representative of AlON (large equiaxed grains, smooth clean 
grain boundaries), while microstructure II is more representative of SiC-N (smaller grains, less 
uniformity, rough boundaries associated with grain boundary segregants).  Mesh refinement is 
sufficient to fully resolve cohesive lengths and grain boundary surface morphology.   
 

 
Figure 1: Finite element meshes (left) microstructure I, 50 grains (right) microstructure II, 126 grains 

[microstructures generated in collaboration with A.D. Rollett, Carnegie Mellon University] 
 

Table 3: Finite element meshes of ceramic microstructures 
Microstructure No. grains No. elements Volume [mm3] Grain boundaries 

I 50 1593788 8.0 smooth 
II 126 1133743 1.0 rough 

 

Grain size / average grain size

0.0 0.5 1.0 1.5 2.0

C
um

ul
at

iv
e 

nu
m

be
r 

fr
ac

tio
n 

of
 g

ra
in

s

0.0

0.2

0.4

0.6

0.8

1.0

Microstructure I
(50 grains)
Microstructure II
(126 grains)

 
 

Figure 2: Normalized cumulative grain size distributions 



5. SILICON CARBIDE: ELASTICITY AND DYNAMIC FRACTURE 
 A number of simulations using both microstructures (i.e., meshes) listed in Table 3 were conducted 
using properties of SiC listed in Tables 1 and 2.  Simulations of SiC reported here prescribe linear 
elastic bulk behavior described by (6), with isotropic properties.  Boundary conditions are assigned as 
follows.  The microstructure (cube) is fixed along one surface (i.e., one face of the cube), and shear 
displacement is applied to the opposite face.  Lateral sides remain traction-free.  One of three 
additional conditions is simultaneously applied to the sheared face: (i) the face is left free to expand in 
the normal direction (referred to as free or unconfined shear), (ii) the face is fixed in the normal 
direction (referred to as fixed or confined shear), or (iii) the face is displaced in the normal direction 
causing simultaneous compression and shear (referred to as compression + shear).  In all cases, the 
applied shear deformation rate 510 /s  .  For compression + shear loading, the applied compressive 
strain rate is also 105/s.  Microstructures are assigned an initial velocity gradient that matches the 
applied boundary conditions so as to minimize elastic shocks that would arise if nodal velocities were 
increased from zero in a stepwise manner; however, release waves do originate from traction-free 
lateral bounaries.  Simulations are listed in Table 4; both microstructures are considered.  Different 
simulations for the same microstructure and boundary condition are delineated by shear loading in 
different directions.  For example, forward and reverse loading on one of two orthogonal directions on 
each of three orthogonal faces of the cube provides up to twelve simulation cases. 
 

Table 4: Numerical simulations of SiC microstructures 
Simulation # Microstructure Boundary condition 

1-4 I free (unconfined) shear 
5-8 I fixed (confined) shear 
9-12 I compression + shear 
13-24 II free (unconfined) shear 
25-36 II fixed (confined) shear 
37-48 II compression + shear 

 
 Representative results from six simulations (one representative of each row in Table 4) are shown 
in Figure 3.  Contours of the shear stress component work conjugate to the loading mode are shown for 
deformed meshes at an applied shear of 5%.  Figure legends are truncated to best display the stress 
distribution; local maxima and minima at stress concentrations may exceed upper and lower bounds of 
the legends.  Displacements are magnified to highlight trends in dynamic fracture behavior.  The 
following results are noteworthy.  Stress magnitude tends to increase with increasing confinement, as 
stress states progress in severity from (a) to (c) to (e) and (b) to (d) to (f).  Microstructure I (50 grains) 
tends to support larger shear stresses, while fractures seem more pronounced for microstructure II (126 
grains).  For microstructure II, some grains are ejected from the specimen as fragmentation proceeds.  
For free shear boundary conditions (Figure 3(a) and (b)), shear stresses have relaxed except near a few 
critical locations at contact surfaces, and significant bending and dilatation are evident along the top 
(free surface), the latter phenomenon reminiscent of shear-induced porosity described by Shockey et 
al. 2 and Curran et al. 32. 
  



 
      (a)             (b) 

 
      (c)             (d) 

 
     (e)              (f) 
 
Figure 3: Shear stress in SiC microstructures at applied shear deformation  of 5%: (a) microstructure 
I, free shear (b) microstructure II, free shear (c) microstructure I, fixed shear (d) microstructure II, 
fixed shear (e) microstructure I, compression + shear (f) microstructure II, compression + shear 
[displacement magnified 5 for (a)-(d); magnified 2 for (e)-(f)] 
 



 Figure 4 shows average applied shear stress and normal stress , obtained from respective nodal 
reaction forces tangential and normal to the sheared face of the specimen.  Results shown correspond 
to the six cases in Figure 3.  Shear strength and normal stress both increase with confinement and 
further increase with applied compression.  Normal stress is negligible for cases corresponding to free 
shear boundary conditions.  Oscillations in shear stress arise as various fracture surfaces are activated, 
grains slide relative to one another, and sliding is impeded by constraints of neighboring grains or 
boundary conditions (for cases involving confinement).  It is suggested that strength and pressure are 
greater in microstructure I because fewer, larger grains are favorably oriented for intergranular 
fracture, and hence fewer fracture sites are available to accommodate the imposed shear deformation.  
For the same reason, increased dilatation (i.e., bulking) would be expected for samples with fewer, 
larger grains since crack paths to achieve percolation across whole aggregates would be more tortuous.     
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       (a)             (b) 
Figure 4: Average shear stress (a) and average normal stress (b) versus applied shear deformation for 
simulations of SiC microstructures shown in Figure 3 
 
 Figure 5(a) shows peak average shear strength J2 of each aggregate versus average pressure p.  
Results shown are for all simulations in Table 4 for which stable solutions were obtained.  The peak 
shear strength was obtained at an applied strain level corresponding to the first local maxima in the 
simulation’s average - curve (e.g., Figure 4(a)), i.e., when /= 0.  Strength is computed via 

 2 2
2 ( 3 ) / 3J    . (10) 

For both microstructures, shear strength appears to increase linearly with pressure.  Slopes of each 
linear fit are nearly identical, but the strength intercept at zero pressure is lower for microstructure II.  
Extrapolation of each curve to null shear provides average hydrostatic tensile strengths of 0.23 GPa 
and 0.10 GPa for microstructures I and II, respectively.  Average strengths can be lower than 
prescribed cohesive strengths because local fractures initiate and propagate early in the simulations as 
a result of mixed-mode loading (e.g., combined bending and shear) and inertial effects (e.g., release 
wave interactions) arising at high loading rates.  Though the present results are limited in scope, a 
decrease in strength with increase in size (measured by number of grains) is apparent from Fig. 5(a).  
This trend of decreasing strength with increasing size has been reported for static flexure (ring crack) 
and Hertzian indentation experiments on SiC 33.  The present results suggest that qualitatively similar 
trends may apply for smaller aggregates of material deformed dynamically at much higher rates. 
 Figure 5(b) shows peak average strength versus applied shear strain for all cases with free shear 
boundary conditions (i.e., no confining pressure).  Stress relaxation at lateral boundaries and the 



cohesive zone-contact model increase the apparent compliance of the aggregate relative to that of an 
elastic element of material deformed in simple shear (dotted line).  Microstructure I (50 grains) 
exhibits a larger average strength and lower variation in strength (in terms of standard deviation) than 
microstructure II (126 grains).  Static experiments 33 have similarly demonstrated higher characteristic 
strength and lower variation (i.e., higher Weibull modulus) as the sample size is decreased.  Possible 
correlation between experimentally measured static strength projected to a low failure probability and 
ballistic performance has been noted 34; however, correlation of performance with grain size or 
hardness was not verified in those experiments.  The present results suggest that a microstructure 
containing fewer, larger grains would provide superior dynamic shear strength, with less variation in 
failure strength, than would a microstructure with smaller, less equiaxed grains, were all other 
properties (e.g., elastic and interfacial behavior) held fixed.  The former class of microstructure would 
have fewer grain boundary planes favorably oriented for fracture initiation and crack extension and 
percolation.  However, the present computations omit the possibility of grain cleavage.  A high purity 
SiC microstructure with larger grains would be more prone to transgranular fracture than would a 
microstructure with smaller grains and grain boundary impurities (e.g., SiC-N) that promote crack 
deflection and toughening 30, 35.    
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       (a)              (b) 
Figure 5: Average peak shear strength versus pressure for all SiC simulations (a) and average peak 
shear strength versus applied deformation for SiC simulations subjected to free (unconfined) shear (b) 
 
6. ALON: ELASTICITY, PLASTICITY, AND DYNAMIC FRACTURE 
 A geometrically nonlinear anisotropic elastic-plastic model 14 is used to represent behavior of 
AlON single crystals, corresponding to (2)-(4) and (7) and Tables 1 and 2.  The isothermal version of 
the model used here considers only the primary slip mode: <110>{111} dislocation glide, with up to 
twelve active, signed slip systems.  Numerical implementation follows Dingreville et al. 36, modified to 
account for pressure-dependent cubic elastic coefficients.  Results of two simulations are reported, as 
listed in Table 5.  Boundary and initial conditions correspond to those discussed already for SiC 
polycrystals in Section 5.  Stability and computational cost restrict the magnitude of deformation 
achieved in each simulation to ~0.5%, which correlates with initiation of plastic yield. 
 

Table 5: Numerical simulations of AlON microstructures 
Simulation # Microstructure Boundary condition 

1 I free (unconfined) shear 
2 I fixed (confined) shear 



 Figure 6 shows that increased plastic slip activity—particularly in the vicinity of constrained grain 
boundaries—occurs in conjunction with confinement associated with fixed shear boundary conditions.  
Slip initiates due to stress concentrations from intergranular incompatibility (e.g., elastic anisotropy) 
and contact interactions.  Figure 7 shows average shear and normal stresses computed from nodal 
reaction forces along the sheared (upper) face.  Normal stress is negligible for free shear as the upper 
face is free to expand, but increases in response to bending, nonlinear elasticity (e.g., a Poynting effect 

18), and dilatation resisted by the fixed boundary.  Shear stress and pressure for fixed shear loading 
begin to increase with loading, relative to the free boundary case, as early as 0.2 % shear deformation.      
 

 
    (a)              (b) 
Figure 6: Number of active slip systems in AlON polycrystal deformed under (a) free shear and (b) 
fixed (confined) shear [shear deformation  of 0.45%; displacement magnified 20]  
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Figure 7: Average shear stress   and normal stress   versus shear deformation for AlON polycrystal 
 
7. CONCLUSIONS 
 Mesoscale simulations have been conducted for SiC and AlON polycrystals subjected to high 
strain rate shear loading (105/s) with varying confinement or superposed compression.  Results of 
numerous simulations of SiC, idealized with linear elastic bulk behavior and uniform grain boundary 
fracture properties, suggest the following trends: (i) shear strength increases linearly with confining 
pressure and (ii) average shear strength is greater and statistical variation in strength lesser for 
microstructures with fewer, larger, more uniformly sized grains relative to those with more, smaller, 



less uniformly sized grains.  Pressure-dependent strength is correlated with shear-induced dilatancy, 
and such pressure dependence is significant despite the assumption of frictionless post-fracture grain 
boundary sliding.  Variations in failure result only from grain geometry since constitutive properties 
are uniform.  Results of dynamic simulations on AlON demonstrate increased plastic slip initiation 
with increasing confinement, particularly in the vicinity of grain boundaries along confined surfaces. 
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